Все о свертываемости крови

Причины повышенной сворачиваемости

Синдром гиперкоагуляции может быть самостоятельным патологическим процессом, вызванным наследственными факторами, которые предопределили дефект системы сворачивания крови.

Подобные состояния носят названия тромбофилий, приведенная таблица описывает их причины:

Поведение факторов свертываемостиФакторы свертываемости
Повышенное образование и/или чрезмерная активность факторов свертываемости:проконвертина;
фактора Виллебранда;
фактора Хагемана;
антигемофильного глобулина;
плазменного предшественника тромбопластина.
Недостаточное образование и/или сниженная активность факторов свертываемости:антикоагулянтов С, S;
антитромбина III;
кофактора гепарина II;
плазминогена и активаторов.

Повышением свертываемости крови проявляются следующие патологические состояния:

Злокачественные или доброкачественные опухоли системы крови. Течение таких опухолей часто сопровождается пониженной либо повышенной свертываемостью. Это различные лейкозы, миеломная болезнь, эритремия и другие заболевания.

Аутоиммунные заболевания. Это заболевания, при которых организм образует антитела к своим клеткам. Антитела – агрессивные белки, которые вызывают повреждение клеток организма, оседая на их компонентах, что вызывает повышенное тромбообразование. Перечень подобных заболеваний включает антифосфолипидный синдром, системную красную волчанку и прочие патологии.

Наследственные заболевания. Это генетические заболевания, не оказывающие прямого влияния на свертываемость крови, но действующие опосредованно, не являясь тромбофилиями (наследственная гиперлипопротеидемия, серповидно-клеточная анемия и другие).

Атеросклероз – распространенный, обширный атеросклероз, особенно на последних стадиях

При этом заболевании повреждаются стенки сосудов, в результате чего образуются пристеночные тромбы с риском последующих инфарктов разных органов.

Почечная и/или печеночная недостаточность – снижают образование антитромбина III, что приводит к повышению свертываемости крови.

Превышение нормы гормонов надпочечников – продолжительная повышенная активность коры надпочечников при опухоли или патологическом стрессе приводит к увеличению образования фибриногена, важной составляющей системы свертывания.

Септические состояния – кровь человека в нормальном состоянии стерильна, в случае наличия в ней микроорганизмов (вирусов, бактерий, грибков) развивается состояние, называемое «сепсис», который проявляется в том числе повышенной свертываемостью.

Гемоконцентрация – состояние крови, при котором нарушается правильное соотношение клеточных элементов и жидкой части крови в сторону клеточной составляющей, вследствие чего происходит сгущение крови. Такое состояние развивается как результат некоторых патологических состояний: понос, рвота, обезвоживание, мочеизнурение (диабет сахарный/не сахарный), ожоги.

Вынужденное малоподвижное либо лежачее положение тела

По причине патологии, травмы или операции. Замедляет кровоток, что повышает риск тромбообразования.

Особенности образа жизни и конституции тела – вредные привычки (употребление алкоголя, наркотиков, курение) и ожирение приводят к повреждению сосудистых стенок, повышению свертываемости и сгущению крови.

Чужеродный объект в сосудистом русле – протез сосуда, искусственный клапан сердца, длительное пребывание катетера в просвете сосуда.

Побочные эффекты приема препаратов – например, это могут быть гормональные контрацептивы, которые содержат гормоны эстрогены (они и сами повышают свертываемость).

Травмы – вещества, которые повышают свертываемость крови, могут попасть в кровь в результате повреждений мягких тканей.

Продолжительное взаимодействие крови с инородным телом. При гемодиализе (очищении крови пациента «искусственной» почкой), при операциях с использованием устройств, которые заменяют работу легких и сердца, и других медицинских вмешательствах с контактом крови больного с инородным объектом.

Идиопатическая гиперкоагуляция. Это состояние, когда комплекс диагностических манипуляций уже был проведен, но не удалось достоверно определить причину повышенной свертываемости крови.

Система свертывания крови

Система включает активные элементы, или факторы свертывания крови. Вещества, находящиеся в плазме, относятся к группе белков и непосредственно участвуют в процессе гемокоагуляции. Их называют плазменными факторами и обозначают римскими цифрами. Вырабатываются они в организме неактивными, когда активируются, то к римской цифре добавляют букву «a». К нескольким из них добавлено имя больного, у которого впервые была выявлена нехватка этого вещества. Среди них следующие факторы:

  1. I – фибриноген. Образуется в печени, а также в селезенке, костном мозге, лимфоузлах. Преобразуется в нерастворимый белок фибрин при участии тромбина.
  2. II – протромбин. Если его содержание составляет менее 40 процентов от нормы, скорость гемостаза понижается.
  3. III – тканевый тромбопластин. Содержится неактивным в разных тканях организма. Участвует в формировании протромбиназы, с помощью которой протромбин превращается в тромбин.
  4. IV – ионы кальция. Участвуют во всех трех фазах гемокоагуляции. При отсутствии слипание тромбоцитов и ретракция сгустка нарушаются.
  5. V – AC-глобулин. Синтезируется в печени, быстро разрушается. Необходимая концентрация для свертывания – не менее 10%.
  6. VI – исключен из списка.
  7. VII – проконвертин. Производится в печени с участием витамина K. Активируется в самой первой фазе, во время свертывания не расходуется, остается в сыворотке крови. Уровень для гемостаза должен составлять не менее 5%.
  8. VIII – антигемофильный глобулин A. Вырабатывается в печени, селезенке, почках, лейкоцитах, клетках эндотелия. Усиливает влияние фактора IX на фактор X. Необходимая концентрация – около 35%.
  9. IX – фактор Кристмаса. Образуется в печени, при этом необходимо участие витамина K. Долго сохраняется в крови (сыворотке и плазме). Свертывание крови происходит, если его уровень не менее 20%.
  10. X – Стюарта – Прауэра. Вырабатывается неактивным в печени с участием витамина K. Минимальная концентрация для гемостаза – 10-20 процентов.
  11. XI – антигемофильный глобулин C. Образуется в печени, становится активным под действием факторов XII, Флетчера, Фитцджеральда и активирует фактор IX.
  12. XII – Хагемана (фактор контактный). Синтезируется неактивным в печени. Свертывание происходит, даже если его уровень составляет всего 1%.
  13. XIII – фибриназа, или фибринстабилизирующий фактор. В плазме крови находится в соединении с фибриногеном. Активируется при участии тромбина. Для гемостаза достаточно 5 %.
  14. XIV – Флетчера, или прокалликреин. Производится в печени, для свертывания достаточно 1%.
  15. XV – Фитцджеральда – Фложе. Необходимая концентрация – 1%.

Недостаточная активность факторов приводит к плохой свертываемости крови и кровотечениям. Это может произойти при недостатке витамина K, болезнях печени, при нарушении всасывания жиров в кишечнике, сниженном образовании желчи, генетических заболеваниях, таких как гемофилия, при которой кровь не свертывается. Витамин K нужен для выработки II, VII, IX и X факторов. Он содержится в продуктах растительного происхождения, их всасывание происходит в кишечнике.

При свертывании крови необходимы активные вещества, находящиеся в тромбоцитах. Они носят название тромбоцитарных (пластинчатых) факторов и обозначаются арабскими цифрами. К ним относятся следующие:

  1. акцелератор-глобулин;
  2. акцелератор тромбина (влияет на скорость превращения фибриногена);
  3. тромбоцитарный тромбопластин;
  4. антигепариновый;
  5. свертываемый;
  6. тромбостенин;
  7. котромбопластин тромбоцитарный;
  8. антифибринолизин;
  9. фибриностабилизирующий;
  10. серотонин;
  11. АДФ (аденозиндифосфат).

Как происходит свертывание?

Кровь, выпущенная из кровеносного сосуда, начинает свертываться уже за три-четыре минуты. Еще через две минуты образуется твердый сгусток студенистой консистенции. Значит в этом процессе важен именно временной промежуток: если сгусток образуется позже, организм потеряет много крови. Таким образом, свертывание крови — это важнейший физиологический процесс, препятствующий кровопотере.

Уменьшение способности крови к свертыванию опасно для человека: даже незначительная травма может обернуться для него большой, порой невосполнимой кровопотерей. И, наоборот, повышенная кровосвертывающая способность организма приводит к тому, что внутри сосудов начинают образовываться сгустки — тромбы. Они приводят к закупорке сосудов.

Нормальный процесс свертывания крови, таким образом, обеспечивает постоянство ее объема в кровяном русле.

Механизм свертывания происходит с помощью изменения физических и химических характеристик крови, основанного на превращении белка фибриногена в фибрин. Фибрин выпадает в виде тонких нитей, способных образовывать сеть. Такая сеть задерживает форменные элементы крови. Тромбоциты еще больше уплотняют кровяной сгусток.

В 1861 г. А. А. Шмидт установил, что превращение растворенного в плазме фибриногена в нерастворимый фибрин проходит под воздействием тромбина, особого фермента. В крови постоянно содержится протромбин, образующийся в печени. Он начинает превращаться в тромбин под воздействием тромбопластина, образующегося во время разрушения тромбоцитов и при повреждении других клеток. В этом процессе также участвуют факторы свертывания крови, в том числе вещества, высвобождающиеся из тромбоцитов. Теория А. А. Шмидта выделяет три стадии этого сложного процесса.

  1. На первой стадии формируется протромбиназа, активирующая белок протромбин. Происходит образование тканевого тромбопластина в ответ на повреждение стенок сосуда. Во время разрушения кровяных пластинок образуется кровяная протромбиназа. Это очень сложный процесс, в котором задействованы тромбоцитарные и плазменные факторы.
  2. На второй стадии протромбин переходит в активный тромбин.
  3. На завершающей стадии происходит превращение фибриногена в фибрин. На его нитях и оседают элементы крови, закрывающие рану.

Процесс свертывания крови невозможен без формирования такого сгустка. При этом запускается свыше 30 различных химических и физиологических реакций. Всего же выделяют три типа кровяных сгустков:

  • белый тромб, состоящий из тромбоцитов и фибрина и появляющийся главным образом в артериях;
  • диссеминированные отложения фибрина, образующиеся в капиллярах;
  • красные тромбы появляются в сосудах с неизмененными стенками при замедленном кровотоке.

Расшифровка результатов

Расшифровка результатов анализов очень важная для принятия дальнейших действий. Следует рассмотреть норму уровня тромбоцитов по возрасту:

  • Двухнедельный возраст — женщин 144-449 тыс/мкл, мужчин 218-419 тыс/мкл;
  • До 4,3 недель — 279-571 и 248-586 тыс/мкл у женщин и мужчин соответственно;
  • До 8,6 недель – у женщин на уровне 331-597 тыс/мкл, а у мужчин 229-562 тыс/мкл;
  • До 6 месяцев – у женщин и мужчин показатель в норме при 247-580 и 244-529 тыс/мкл соответственно;
  • До двухлетнего возраста – у женщин 214-459 тыс/мкл, мужчин 206-445 тыс/мкл;
  • До 6 лет – 189-394 и 202-403 тыс/мкл у женщин и мужчин соответственно;
  • Более 6 лет показатель 150-400 считается нормой, независимо от пола.

Регуляция системы свертывания

Рисунок 6. Вклад внешней и внутренней теназы в формирование фибринового сгустка в пространстве. Мы использовали математическую модель, чтобы исследовать, как далеко может простираться влияние активатора свертывания (тканевого фактора) в пространстве. Для этого мы посчитали распределение фактора Xa (который определяет распределение тромбина, который определяет распределение фибрина). На анимации показаны распределения фактора Xa, произведенного внешней теназой (комплексом VIIa–TF) или внутренней теназой (комплексом IXa–VIIIa), а также общее количество фактора Xa (заштрихованная область). (Вставка показывает то же самое на более крупной шкале концентраций.) Можно видеть, что произведенный на активаторе фактор Xa не может проникнуть далеко от активатора из-за высокой скорости ингибирования в плазме. Напротив, комплекс IXa–VIIIa работает вдали от активатора (т.к. фактор IXa медленнее ингибируется и потому имеет большее расстояние эффективной диффузии от активатора), и обеспечивает распространение фактора Xa в пространстве.

Сделаем следующий логический шаг и попробуем ответить на вопрос — а как описанная выше система работает?

Каскадное устройство системы свертывания

Начнем с каскада — цепочки активирующих друг друга ферментов. Один фермент, работающий с постоянной скоростью, дает линейную зависимость концентрации продукта от времени. У каскада из N ферментов эта зависимость будет иметь вид tN, где t — время

Для эффективной работы системы важно, чтобы ответ носил именно такой, «взрывной» характер, поскольку это сводит к минимуму тот период, когда сгусток фибрина еще непрочен

Запуск свертывания и роль положительных обратных связей

Как упоминалось в первой части статьи, многие реакции свертывания медленны. Так, факторы IXa и Xa сами по себе являются очень плохими ферментами и для эффективного функционирования нуждаются в кофакторах (факторах VIIIa и Va, соответственно). Эти кофакторы активируются тромбином: такое устройство, когда фермент активирует собственное производство, называется петлей положительной обратной связи.

Как было показано нами экспериментально и теоретически, положительная обратная связь активации фактора V тромбином формирует порог по активации — свойство системы не реагировать на малую активацию, но быстро срабатывать при появлении большой. Подобное умение переключаться представляется весьма ценным для свертывания: это позволяет предотвратить «ложное срабатывание» системы.

Роль внутреннего пути в пространственной динамике свертывания

Одной из интригующих загадок, преследовавших биохимиков на протяжении многих лет после открытия основных белков свертывания, была роль фактора XII в гемостазе. Его дефицит обнаруживался в простейших тестах свертывания, увеличивая время, необходимое для образования сгустка, однако, в отличие от дефицита фактора XI, не сопровождался нарушениями свертывания.

Один из наиболее правдоподобных вариантов разгадки роли внутреннего пути был предложен нами с помощью пространственно неоднородных экспериментальных систем. Было обнаружено, что положительные обратные связи имеют большое значение именно для распространения свертывания. Эффективная активация фактора X внешней теназой на активаторе не поможет сформировать сгусток вдали от активатора, так как фактор Xa быстро ингибируется в плазме и не может далеко отойти от активатора. Зато фактор IXa, который ингибируется на порядок медленнее, вполне на это способен (и ему помогает фактор VIIIa, который активируется тромбином). А там, куда сложно дойти и ему, начинает работать фактор XI, также активируемый тромбином. Таким образом, наличие петель положительных обратных связей помогает создать трехмерную структуру сгустка.

Путь протеина С как возможный механизм локализации тромбообразования

Активация протеина С тромбином сама по себе медленна, но резко ускоряется при связывании тромбина с трансмембранным белком тромбомодулином, синтезируемым клетками эндотелия. Активированный протеин С способен разрушать факторы Va и VIIIa, на порядки замедляя работу системы свертывания. Ключом к пониманию роли данной реакции стали пространственно-неоднородные экспериментальные подходы. Наши эксперименты позволили предположить, что она останавливает пространственный рост тромба, ограничивая его размер.

Механизм гемокоагуляции

В свертывании крови задействовано два механизма. Если сосуды мелкие, происходит процесс сосудисто-тромбоцитарный. В этом случае идет образование сгустка тромбоцитарного. Время его образования составляет от 1 до 5 минут.

Во время кровотечения в сосуде формируется волокнистое вещество – фибрин. В его нити попадают кровяные элементы, и образуется тромб

В случае, если поврежден сосуд крупный, первый механизм не подходит. Пробка тромбоцитарная не может выдержать повышенного давления, поэтому необходимо образование сгустка более надежного – фибринового. Вот почему в данном случае механизм задействуется другой – коагуляционный.

Запускается процесс свертывания крови, когда повреждается сосуд и начинаются изменения (физико-химические) плазменного белка фибриногена. В ходе этой цепной реакции активация факторов свертывания, а также формирование комплексов с участием ионов кальция осуществляется последовательно. В результате под действием тромбина фибриноген растворимый преобразуется в нерастворимый. Так появляется волокнистое вещество – фибрин, выпадающий в форме нитей. Будучи тонкими и длинными, они образуют сети, в них попадают форменные клетки крови, таким образом появляется тромб.

Было создано несколько теорий о свертывании крови. В наше время признана теория Шмидта, согласно которой процесс проходит в три стадии.

Фаза первая

Она является наиболее длительной и сложной. Время ее продолжения – примерно 5-10 минут. На этой стадии идет формирование протромбиназы, под воздействием которой становится активным плазменный белок протромбин. Задействуются факторы, как кровяные, так и тканевые. Во время повреждения сосудистых стенок и близлежащих тканей начинает формироваться тромбопластин тканевый. Этот процесс проходит при взаимодействии плазменных факторов с выделяющимися при повреждении тканей веществами. При разрушении пластинок крови начинает образовываться протромбиназа (тромбопластин) кровяная. Это обусловлено сложным взаимодействием и тромбоцитарных факторов, и плазменных с выделяющимися в результате разрушения веществами.

Фаза третья

Эта стадия завершающая. Растворимый фибриноген преобразуется в нерастворимый. Сначала с помощью тромбина формируется фибрин-мономер, после чего с участием ионов Ca² получается растворимый фибрин-полимер. С помощью фактора XIII образуется стойкий к расщеплению фибрин-полимер нерастворимый. Он имеет вид нитей. На них и оседают кровяные элементы, в том числе и красные клетки. Таким образом формируется сгусток, закрывающий рану.

Фазы свертывания крови

Различают такие физиологические фазы свертывания крови.

  1. Активация. Она включает в себя комплекс последовательных реакций образования протромбиназы и превращения протробина в тромбин.
  2. Коагуляция – явление образования фибрина, отвечающего за формирование водонерастворимых нитей.
  3. Ретракция – это образование сгустка из фибрина.

Указанные этапы связаны с активностью всех ферментов, необходимых для нормального образования кровяного сгустка. Примечательно, что эти стадии, фазы процесса свертывания были описаны еще в начале прошлого века и до сих пор не утратили своей актуальности для понимания сложных процессов, протекающих в крови.

В системе свертывания крови заметное место отводится 7 фактору. Активность фактора VII в плазме, продолжительность формирования сгустка крови являются важными показателями состояния процесса тромбообразования. Если этого вещества достаточно, то на протяжении 5 минут из крови образуется плотный сгусток.

Свертываемости крови норма по времени

Одним из главных показателей крови является коагулограмма – исследование, определяющее качество свертываемости. Врач всегда направит на это исследование, если у пациента имеются тромбозы, аутоиммунные нарушения, варикозная болезнь, неясной этиологии острые и хронические кровотечения. Также этот анализ нужен для необходимых случаев при операции и при беременности.

У детей более быстрая сворачиваемость крови, чем у взрослых: кровь останавливается уже через 1,2 минуты, а тромб образуется по прошествии всего 2,5-5 минут.

Также при исследовании крови важное значение имеют измерения:

  • Протромбина – белка, ответственного за механизмы свертывания. Его норма: 77-142%.
  • Протромбинового индекса: отношение стандартного значения этого показателя к значению протромбина у пациента. Норма: 70-100%
  • Протромбинового времени: периода времени, в течение которого совершается свертывание. У взрослых оно должно находиться в пределах 11-15 сек, у маленьких детей 13-17 сек. Является диагностическим методом при подозрении на гемофилию, ДВС-синдром.
  • Тромбинового времени: показывает скорость образования тромба. Норма 14-21 сек.
  • Фибриногена – белка, ответственного за тромбообразование, свидетельствующего об имеющемся воспалении в организме. В норме его должно быть в крови 2-4 г/л.
  • Антитромбина – специфического белкового вещества, обеспечивающего рассасывание тромба.

6 продуктов, сгущающих кровь

Для повышения свертываемости крови в рацион рекомендуется включать следующие продукты, улучшающие её качество:

  1. Сливочное масло. Является одним из самых безопасных «животных» жиров, практически не влияющих на вязкость крови.
  2. Животные субпродукты. Печень, почки, легкие, сердце, желудок – все это является источником легкого для усвоения белка, из которого в печени впоследствии формируется фибриноген. При этом жира в таких продуктах – минимум, поэтому это не вызовет повышения уровня того же холестерина.
  3. Гречневая каша. Среди всех круп именно гречка повышает коагуляцию. Менее эффективно действует рис и овсянка. От остальных же каш следует отказаться. Также гречка поднимает гемоглобин.
  4. Бобовые. Очень богаты на растительные белки, повышают уровень фибриногена, а также вязкость крови. При повышенном давлении от них лучше отказаться, а вот при гипотонии – обязательно включают в рацион.
  5. Сдоба. Богата на глюкозу и белки, что повышает преимущественно вязкость крови. При повышенном сахаре, естественно, их исключают из рациона.
  6. Морская рыба. Сюда же стоит отнести красную и черную икру. Все эти продукты богаты на омега-3 ненасыщенные жирные кислоты, которые снижают концентрацию холестерина, нормализуют вязкость крови, а также оптимизируют кроветворную функцию. Все это увеличивает концентрацию тромбоцитов.

Процесс свёртывания крови

Классическая схема свёртывания крови по Моравицу (1905 год)

Схема взаимодействия факторов свёртывания крови

Процесс свёртывания крови представляет собой преимущественно проферментно-ферментный каскад, в котором проферменты, переходя в активное состояние, приобретают способность активировать другие факторы свёртывания крови.
В самом простом виде процесс свёртывания крови может быть разделён на три фазы:

  1. фаза активации включает комплекс последовательных реакций, приводящих к образованию протромбиназы и переходу протромбина в тромбин;
  2. фаза коагуляции — образование фибрина из фибриногена;
  3. фаза ретракции — образование плотного фибринового сгустка.

Данная схема была описана ещё в 1905 году Моравицем и до сих пор не утратила своей актуальности.

В области детального понимания процесса свёртывания крови с 1905 года произошёл значительный прогресс. Открыты десятки новых белков и реакций, участвующих в процессе свёртывания крови, который имеет каскадный характер. Сложность этой системы обусловлена необходимостью регуляции данного процесса.

Современное представление с позиций физиологии каскада реакций, сопровождающих свёртывание крови, представлено на рис. 2 и 3.
Вследствие разрушения тканевых клеток и активации тромбоцитов высвобождаются белки фосфолипопротеины, которые вместе с факторами плазмы Xa и Va, а также ионами Ca2+ образуют ферментный комплекс, который активирует протромбин. Если процесс свёртывания начинается под действием фосфолипопротеинов, выделяемых из клеток повреждённых сосудов или соединительной ткани, речь идёт о внешней системе свёртывания крови (внешний путь активации свёртывания, или путь тканевого фактора). Основными компонентами этого пути являются 2 белка: фактор VIIа и тканевый фактор, комплекс этих 2 белков называют также комплексом внешней теназы.

Если же инициация происходит под влиянием факторов свёртывания, присутствующих в плазме, используют термин внутренняя система свёртывания. Комплекс факторов IXа и VIIIa, формирующийся на поверхности активированных тромбоцитов, называют внутренней теназой. Таким образом, фактор X может активироваться как комплексом VIIa—TF (внешняя теназа), так и комплексом IXa—VIIIa (внутренняя теназа). Внешняя и внутренняя системы свёртывания крови дополняют друг друга.

В процессе адгезии форма тромбоцитов меняется — они становятся округлыми клетками с шиповидными отростками. Под влиянием АДФ (частично выделяется из повреждённых клеток) и адреналина способность тромбоцитов к агрегации повышается. При этом из них выделяются серотонин, катехоламины и ряд других веществ. Под их влиянием происходит сужение просвета повреждённых сосудов, возникает функциональная ишемия. В конечном итоге сосуды перекрываются массой тромбоцитов, прилипших к краям коллагеновых волокон по краям раны.

На этой стадии гемостаза под действием тканевого тромбопластина образуется тромбин. Именно он инициирует необратимую агрегацию тромбоцитов. Реагируя со специфическими рецепторами в мембране тромбоцитов, тромбин вызывает фосфорилирование внутриклеточных белков и высвобождение ионов Ca2+.

При наличии в крови ионов кальция под действием тромбина происходит полимеризация растворимого фибриногена (см. фибрин) и образование бесструктурной сети волокон нерастворимого фибрина. Начиная с этого момента в этих нитях начинают фильтроваться форменные элементы крови, создавая дополнительную жёсткость всей системе, и через некоторое время образуя тромбоцитарно-фибриновый сгусток (физиологический тромб), который закупоривает место разрыва, с одной стороны, предотвращая потерю крови, а с другой — блокируя поступление в кровь внешних веществ и микроорганизмов.
На свёртывание крови влияет множество условий. Например, катионы ускоряют процесс, а анионы — замедляют. Кроме того, существуют вещества как полностью блокирующие свёртывание крови (гепарин, гирудин и другие), так и активирующие его (яд гюрзы, феракрил).

Врождённые нарушения системы свёртывания крови называют гемофилией.

Почему кровь сворачивается?

Свертывание крови является очень важной защитной реакцией организма человека. Оно препятствует потере крови, при этом сохраняется постоянство ее объема, находящегося в организме

Механизм свертывания запускается при помощи изменения физико-химического состояния крови, которое основано на растворенном в ее плазме белке фибриногене.

Фибриноген способен превращаться в нерастворимый фибрин, выпадающий в виде тоненьких нитей. Эти самые нити могут образовывать густую сеть с мелкими ячейками, которая задерживает форменные элементы. Вот так и получается тромб. Со временем кровяной сгусток постепенно уплотняется, стягивает края раны и тем самым способствует ее скорейшему заживлению. При уплотнении сгусток выделяет желтоватую прозрачную жидкость, которая называется сывороткой.

В свертывании крови участвуют также тромбоциты, которые уплотняют сгусток. Этот процесс похож на получение творога из молока, когда сворачивается казеин (белок) и так же образуется сыворотка. Рана в процессе заживления способствует постепенному рассасыванию и растворению сгустка фибрина.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *